内容简介
《液化天然气技术手册》讲述了本手册较全面地反映了国内外液化天然气的新应用和技术进展。内容全面、丰富新颖,论述深入浅出,是一本实用性很强的工具书。主要阐述了液化天然气的基本理论、新技术和工程应用实践。内容包括液化天然气技术理论基础,天然气液化,液化天然气装置的相关设备,液化天然气接收终端,液化天然气的储存和运输,液化天然气设备的制造工艺和材料,液化天然气工厂和接收终端的设计基础,液化天然气应用技术,液化天然气冷能回收技术,以及液化天然气安全技术等。
《液化天然气技术手册》可供能源领域,尤其是液化天然气专业的工程技术人员阅读使用,也可供大专院校相关专业的师生教学参考。
目录
前言
第1章 液化天然气技术理论基础
1.1 工程热力学基础
1.1.1 基本概念和定义
1.1.2 热力学基本定律
1.2 流体力学基础
1.2.1 流体的物理性质
1.2.2 流体的可压缩性与热膨胀性
1.2.3 流体的传输特性
1.2.4 表面张力和毛细现象
1.2.5 流体的平衡——流体静力学基础
1.2.6 理想流体运动的基本方程——流体动力学基础
1.3 传热学基础
1.3.1 导热
1.3.2 对流换热的理论基础及计算
1.3.3 辐射换热的基础理论
1.4 液化天然气的一般特性
1.4.1 热力特性
1.4.2 传输特性
1.4.3 材料特性
1.4.4 绝热特性
1.4.5 储存特性
1.4.6 冷能利用特性
参考文献
第2章 天然气的液化
2.1 液化前原料气处理
2.1.1 脱水
2.1.2 脱酸性气体
2.1.3 脱其他杂质
2.1.4 HYSYS软件模拟工艺过程
2.2 天然气液化流程
2.2.1 级联式液化流程
2.2.2 混合制冷剂液化流程
2.2.3 带膨胀机的液化流程
2.3 天然气液化装置
2.3.1 基本负荷型(基地型)液化装置
2.3.2 典型中小型液化装置
2.3.3 浮式液化天然气生产储卸装置
2.4 世界各国液化天然气装置汇集
参考文献
第3章 液化天然气接收终端
3.1 液化天然气接收终端概况
3.1.1 卸料系统
3.1.2 储存系统
3.1.3 蒸发气(BOG)处理
3.1.4 LNG输送系统
3.1.5 LNG汽化
3.1.6 公用工程
3.2 典型的陆岸液化天然气接收终端
3.2.1 站址选择
3.2.2 规范和标准
3.2.3 船和码头设施及建设
3.2.4 卸料过程
3.2.5 LNG储罐
3.2.6 蒸发气处理
3.2.7 输送系统
3.2.8 汽化
3.2.9 公用工程
3.2.10 自控系统
3.2.11 安全和消防
3.2.12 计量系统
3.2.13 分析化验
3.3 液化天然气接收终端设备和材料
3.3.1 卸料臂和蒸发气返回臂
3.3.2 LNG输送泵
3.3.3 蒸发气压缩机
3.3.4 再冷凝器
3.3.5 汽化器
3.3.6 海水泵和消防水泵
3.3.7 海水过滤器
3.3.8 电解氯装置
3.3.9 材料选用
3.3.10 保冷工程
3.4 性能试验
3.4.1 单机/单元功能试验
3.4.2 装置性能试验
3.4.3 试运行
3.5 大型液化天然气储罐
3.5.1 储罐设计
3.5.2 储罐材料
3.5.3 全包容储罐的结构建造
3.5.4 干燥、惰化和冷却
3.6 节能与冷能利用
3.6.1 节能措施
3.6.2 冷能综合利用
3.7 新型液化天然气接收终端
3.7.1 码头汽化接收终端
3.7.2 海上汽化接收终端
3.8 世界各国液化天然气接收终端汇集
参考文献
第4章 LNG工厂设计基础
4.1 LNG工厂设计
4.1.1 厂址选择
4.1.2 工厂布置
4.1.3 LNG工程项目组成举例
4.2 装置(车间)布置
4.2.1 工艺装置组成
4.2.2 布置原则
4.2.3 布置工作内容
4.3 工程经济
4.3.1 投资估算
4.3.2 融资方案
4.3.3 财务评价
4.3.4 国民经济评价
4.3.5 经济分析常用符号中英文对照
4.4 环境保护
4.4.1 环境保护标准
4.4.2 工程项目的环境保护编制提纲
4.5 劳动安全卫生
4.5.1 标准及评价方法
4.5.2 工程项目的劳动安全卫生编制提纲
4.6 消防
4.6.1 消防标准
4.6.2 LNG工程总平面布置的防火间距
4.6.3 工艺生产装置、储罐布置的相关安全距离
4.6.4 消防设施
4.7 电力安全设计
4.7.1 供电及电气爆炸和火灾危险性环境区域的划分
4.7.2 爆炸性气体环境和火灾危险环境用电器设备的选择
4.7.3 爆炸性气体环境和火灾危险环境用电气设备选择
参考文献
第5章 液化天然气储存和运输
5.1 液化天然气陆上储存
5.1.1 LNG储罐形式
5.1.2 LNG储罐的比较及选择
5.1.3 储
试读
7.平衡状态
平衡状态是指热力系在没有外界作用的情况下,宏观性质不随时间变化的状态。
处于平衡状态的单相流体(气体或液体),如果忽略重力的影响,又没有其他外场作用,它内部各处的各种性质都是均匀一致的。不仅流体内部的压力均匀一致(这是建立力平衡的必要条件)、温度均匀一致(这是建立热平衡的必要条件),而且所有其他宏观性质,例如:比体积、比热力学能、比焓、比熵等也都是均匀一致的。
处于气.液两相平衡的流体,流体内部的压力和温度均匀一致,但气相和液相的比体积(或密度)、比热力学能、比焓、比熵不同。
8.状态方程和状态参数坐标图
处于平衡(均匀)状态的热力系,两个相互独立的状态参数就可以规定它的平衡状态。在其他状态参数和这两个相互独立的状态参数之间,必定存在某种单值的函数关系。压力、温度、比体积这三个可以直接测量的基本状态参数之间存在v=f(p,T)的关系。这一函数关系称为状态方程。状态方程也可以写为如下隐函数的形式:
f(p,v,T)=0(1-7)
9.热力过程和热力循环
热力过程是指热力系从一个状态向另一个状态变化时所经历的全部状态的总合。
热力循环就是封闭的热力过程,即热力系从某一状态开始,经过一系列中间状态后,又回复到原来状态。
10.功和热量
热力系通过界面和外界进行的机械能的交换量称为做功量,简称功(机械功)。它们之间的热能的交换量称为传热量,简称热量。功和热量是和热力系的状态变化(即过程)联系在一起的。它们不是状态量而是过程量。
功的符号是W,热量的符号是Q。对于单位质量的热力系,功用w表示,热量用q表示。热力学中通常规定:热力系对外界做功为正(W〉0),外界对热力系做功为负(W〈O);热力系从外界吸热为正(Q〉0),热力系向外界放热为负(Q〈0)。
11.实际气体和理想气体
气体通常具有较大的比体积,气体分子之间的平均距离通常要比液体和固体的大得多。气体分子本身的体积通常比气体所占的体积小得多,气体分子之间的作用力(分子力)也较小,分子运动所受到的约束较弱,分子运动很自由。
……