内容简介
本书由浅入深地介绍了信号的基础理论、分析方法及应用,旨在帮助读者理解数字信号处理的基本概念和方法。本书共分为十五章,介绍了数字信号处理基础、信号与函数、信号与傅里叶级数、信号与频谱、傅里叶级数与傅里叶变换、信号的卷积、信号的采样、信号的调制与解调、信号的上下变频、信号的抽取与插值、离散傅里叶变换、快速傅里叶变换、拉普拉斯变换与z变换、数字滤波器、数字信号处理的实现。
本书可作为电子工程专业、通信专业及其他相关专业的教学参考书,也可作为相关工程技术人员的参考书。
目录
第1章 数字信号处理基础1
1.1 什么是信号 2
1.2 什么是电信号 2
1.3 什么是模拟信号 3
1.4 什么是数字信号 4
1.5 什么是数字信号处理 5
第2章 信号与函数 7
2.1 什么是函数 8
2.2 正余弦信号的公式表示法 10
2.3 正余弦信号的向量表示法 13
2.4 正余弦信号的复指数表示法 15
第3章 信号与傅里叶级数 19
3.1 信号的分解与合成 20
3.2 向量与正交基 24
3.2.1 向量的概念和重要性质 24
3.2.2 向量内积的线性表示 25
3.2.3 多维向量的内积 26
3.2.4 正交组与正交基 27
3.2.5 多维向量的正交分解 28
3.3 向量与函数 30
3.3.1 向量与函数的比较 30
3.3.2 函数的内积 32
3.3.3 函数内积的性质 33
3.4 如何理解傅里叶级数 35
3.4.1 傅里叶级数的定义 35
3.4.2 三角函数集的正交性 35
3.4.3 傅里叶级数展开 37
第4章 信号与频谱 41
4.1 信号的幅度谱与相位谱 42
4.2 傅里叶级数的复指数形式 49
4.2.1 复数及其性质 49
4.2.2 虚数及其性质 51
4.2.3 复向量的内积 52
4.2.4 复指数函数与复指数信号 54
4.2.5 傅里叶级数的复指数形式 57
4.3 复指数形式的傅里叶频谱 58
4.3.1 正余弦信号的傅里叶级数展开 58
4.3.2 复指数信号的幅度谱和相位谱 59
第5章 傅里叶级数与傅里叶变换 65
5.1 周期矩形脉冲信号的频谱 66
5.2 非周期信号的频谱 69
5.2.1 信号的频谱密度 69
5.2.2 非周期信号的傅里叶变换 71
5.2.3 函数的连续性 72
5.2.4 函数的微分 73
5.2.5 函数的积分 74
5.2.6 非周期信号的傅里叶逆变换 75
5.3 傅里叶级数与傅里叶变换的关系 75
第6章 信号的卷积 77
6.1 什么是卷积 78
6.1.1 卷积的定义 78
6.1.2 卷积的计算过程 79
6.1.3离散序列的卷积 84
6.2 卷积积分 84
6.2.1冲激函数 84
6.2.2冲激函数的移位 85
6.2.3信号的时域分解 87
6.2.4卷积积分的定义及物理意义 88
6.3 卷积积分的应用 90
6.3.1时域卷积定理 91
6.3.2 冲激响应 92
6.3.3系统的频率响应 93
6.3.4时域卷积定理的应用-数字滤波器 95
6.3.5频域卷积定理及应用 96
第7章 信号的采样 99
7.1 采样与傅里叶变换 100
7.1.1 模数转换 100
7.1.2 冲激信号的傅里叶变换 102
7.1.3 直流信号的傅里叶变换 103
7.1.4 复指数信号的傅里叶变换 104
7.1.5 正余弦信号的傅里叶变换 105
7.1.6 一般周期信号的傅里叶变换 108
7.1.7 周期冲激信号的傅里叶变换 111
7.1.8 采样的频域分析 112
7.2 低通采样定理 113
7.3 带通采样定理 119
第8章 信号的调制与解调 127
8.1 调制的必要性 128
8.2 余弦信号的调制 128
8.2.1 余弦信号的双边带调制 128
8.2.2 余弦信号的单边带调制 130
8.2.3 余弦信号的IQ调制 133
8.3 基带信号的调制与解调 135
8.3.1 基带信号的调制原理 135
8.3.2 BPSK调制过程 136
8.3.3 基带信号的正交调制 139
8.3.4 基带信号的正交解调 141
第9章 信号的上下变频 143
9.1 余弦信号的上下变频 144
9.2 基带信号的上下变频 146
9.3 数字控制振荡器原理 151
9.4 CORDIC算法原理 157
第10章 信号的抽取与插值 161
10.1 信号的采样频率变换 162
10.2 信号的抽取 167
10.3 信号的插值 174
第11章 离散傅里叶变换 183
11.1 离散傅里叶级数 184
11.1.1 离散时间周期矩形脉冲信号的频谱 184
11.1.2 离散复指数信号 185
11.1.3 离散傅里叶级数及其物理意义 188
11.2 离散时间傅里叶变换 189
11.3 离散傅里叶变换 192
11.3.1 离散傅里叶变换公式 192
11.3.2 对离散傅里叶变换的理解 194
第12章 快速傅里叶变换 197
12.1 旋转矢量的表示方法及性质 198
12.1.1 旋转矢量的表示方法 198
12.1.2 旋转矢量的性质 200
12.2 快速傅里叶变换 202
12.2.1 从DFT到FFT 202
12.2.2 时间抽取FFT算法 207
12.2.3 频率抽取FFT算法 208
12.3 傅里叶变换的应用 209
12.3.1 DFT的应用举例 209
12.3.2 FFT的应用举例 214
第13章 拉普拉斯变换与z变换 217